Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6
نویسندگان
چکیده
5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase-related diseases.
منابع مشابه
Structural basis for substrate recognition by the human N-terminal methyltransferase 1.
α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The ph...
متن کاملStructural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1
The 5'-cap of spliceosomal small nuclear RNAs, some small nucleolar RNAs and of telomerase RNA was found to be hypermethylated in vivo. The Trimethylguanosine Synthase 1 (TGS1) mediates this conversion of the 7-methylguanosine-cap to the 2,2,7-trimethylguanosine (m(3)G)-cap during maturation of the RNPs. For mammalian UsnRNAs the generated m(2,2,7)G-cap is one part of a bipartite import signal ...
متن کاملAb initio (first principle) material modeling study on Lio adsorbed by palladium-cobalt (PdCo) nanoparticles
PdCo subnanoalloys have been commonly used as a catalytic material in some important chemicalreactions, involving in fisher-tropsch reactions, and oxygen reduction reactions. In terms ofunderstanding the role of catalysis, these smallest bimetallic nanoparticles provide the simplestprototypes of Pd-Co bimetallic catalysts for different compositions. In this study, the effect o...
متن کاملStructural insights into the molecular mechanism of the m6A writer complex
Methylation of adenosines at the N(6) position (m(6)A) is a dynamic and abundant epitranscriptomic mark that regulates critical aspects of eukaryotic RNA metabolism in numerous biological processes. The RNA methyltransferases METTL3 and METTL14 are components of a multisubunit m(6)A writer complex whose enzymatic activity is substantially higher than the activities of METTL3 or METTL14 alone. T...
متن کاملFunctional dichotomy in the 16S rRNA (m1A1408) methyltransferase family and control of catalytic activity via a novel tryptophan mediated loop reorganization.
Methylation of the bacterial small ribosomal subunit (16S) rRNA on the N1 position of A1408 confers exceptionally high-level resistance to a broad spectrum of aminoglycoside antibiotics. Here, we present a detailed structural and functional analysis of the Catenulisporales acidiphilia 16S rRNA (m(1)A1408) methyltransferase ('CacKam'). The apo CacKam structure closely resembles other m(1)A1408 m...
متن کامل